Estudios Científicos Células Madre

January 29, 2024by CelFrontiers

Estudios Científicos Células Madre

Algunos estudios sobre Células Madre en español:

Células madre: qué son y qué hacen // Middlesex Health

https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-53372013000300009

Células madre: qué son y qué hacen – Mayo Clinic

https://revhematologia.sld.cu/index.php/hih/article/view/1133/1028

Scientific Literature about Stem Cells in English:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357075/

https://pubmed.ncbi.nlm.nih.gov/35441799/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810265/#:~:text=Skin%20damage%20causes%20an%20inflammatory,expression%20of%20related%20inflammatory%20factors.

SCIENTIFIC REFERENCE FOR STEM CELLS:

References
1. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–489. doi: 10.1038/nature10673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
2. Ancans J. Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development. Front. Immunol. 2012;3:253. doi: 10.3389/fimmu.2012.00253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. Yin JQ, Zhu J, Ankrum JA. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 2019;3:90–104. doi: 10.1038/s41551-018-0325-8. [PubMed] [CrossRef] [Google Scholar]
4. O’Brien T, Barry FP. Stem cell therapy and regenerative medicine. Mayo Clin. Proc. 2009;84:859–861. doi: 10.4065/84.10.859. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Mousaei Ghasroldasht, M., Seok, J., Park, H. S., Liakath Ali, F. B. & Al-Hendy, A. Stem cell therapy: from idea to clinical practice. Int. J. Mol. Sci. 23, 2850 (2022). [PMC free article] [PubMed]
6. Kuriyan AE, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N. Engl. J. Med. 2017;376:1047–1053. doi: 10.1056/NEJMoa1609583. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Biehl JK, Russell B. Introduction to stem cell therapy. J. Cardiovasc. Nurs. 2009;24:98–103. doi: 10.1097/JCN.0b013e318197a6a5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Srijaya TC, Ramasamy TS, Kasim NH. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J. Transl. Med. 2014;12:243. doi: 10.1186/s12967-014-0243-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell” Cell Stem Cell. 2007;1:35–38. doi: 10.1016/j.stem.2007.05.013. [PubMed] [CrossRef] [Google Scholar]
10. Konstantinov IE. In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect. Biol. Med. 2000;43:269–276. doi: 10.1353/pbm.2000.0006. [PubMed] [CrossRef] [Google Scholar]
11. Droscher A. Images of cell trees, cell lines, and cell fates: the legacy of Ernst Haeckel and August Weismann in stem cell research. Hist. Philos. Life Sci. 2014;36:157–186. doi: 10.1007/s40656-014-0028-8. [PubMed] [CrossRef] [Google Scholar]
12. Jansen J. The first successful allogeneic bone-marrow transplant: Georges Mathe. Transfus. Med. Rev. 2005;19:246–248. doi: 10.1016/j.tmrv.2005.02.006. [PubMed] [CrossRef] [Google Scholar]
13. Blume KG, Weissman ILE. Donnall Thomas (1920-2012) Proc. Natl Acad. Sci. USA. 2012;109:20777–20778. doi: 10.1073/pnas.1218913109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
14. Cheng M. Hartmann Stahelin (1925-2011) and the contested history of cyclosporin A. Clin. Transpl. 2013;27:326–329. doi: 10.1111/ctr.12072. [PubMed] [CrossRef] [Google Scholar]
15. Thomas ED, et al. Aplastic anaemia treated by marrow transplantation. Lancet. 1972;1:284–289. doi: 10.1016/S0140-6736(72)90292-9. [PubMed] [CrossRef] [Google Scholar]
16. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263–272. [PubMed] [Google Scholar]
17. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403. [PubMed] [Google Scholar]
18. Caplan AI. Mesenchymal stem cells. J. Orthop. Res. 1991;9:641–650. doi: 10.1002/jor.1100090504. [PubMed] [CrossRef] [Google Scholar]
19. Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can. J. Physiol. Pharm. 2021;99:129–139. doi: 10.1139/cjpp-2020-0406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Liu C, Han D, Liang P, Li Y, Cao F. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease. Front. Cell Dev. Biol. 2021;9:636136. doi: 10.3389/fcell.2021.636136. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Zhang J, et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021;78:2092–2105. doi: 10.1016/j.jacc.2021.09.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Gyongyosi M, Wojakowski W, Navarese EP, Moye LA, Investigators A. Meta-analyses of human cell-based cardiac regeneration therapies: controversies in meta-analyses results on cardiac cell-based regenerative studies. Circ. Res. 2016;118:1254–1263. doi: 10.1161/CIRCRESAHA.115.307347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Okamoto R, Matsumoto T, Watanabe M. Regeneration of the intestinal epithelia: regulation of bone marrow-derived epithelial cell differentiation towards secretory lineage cells. Hum. Cell. 2006;19:71–75. doi: 10.1111/j.1749-0774.2006.00010.x. [PubMed] [CrossRef] [Google Scholar]
24. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 2019;16:19–34. doi: 10.1038/s41575-018-0081-y. [PubMed] [CrossRef] [Google Scholar]
25. Santos AJM, Lo YH, Mah AT, Kuo CJ. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 2018;28:1062–1078. doi: 10.1016/j.tcb.2018.08.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Roda G, et al. Crohn’s disease. Nat. Rev. Dis. Prim. 2020;6:22. doi: 10.1038/s41572-020-0156-2. [PubMed] [CrossRef] [Google Scholar]
27. Kobayashi T, et al. Ulcerative colitis. Nat. Rev. Dis. Prim. 2020;6:74. doi: 10.1038/s41572-020-0205-x. [PubMed] [CrossRef] [Google Scholar]
28. Gratwohl A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transpl. 2005;35:869–879. doi: 10.1038/sj.bmt.1704892. [PubMed] [CrossRef] [Google Scholar]
29. Kashyap A, Forman SJ. Autologous bone marrow transplantation for non-Hodgkin’s lymphoma resulting in long-term remission of coincidental Crohn’s disease. Br. J. Haematol. 1998;103:651–652. doi: 10.1046/j.1365-2141.1998.01059.x. [PubMed] [CrossRef] [Google Scholar]
30. Hurley JM, Lee SG, Andrews RE, Jr., Klowden MJ, Bulla LA., Jr. Separation of the cytolytic and mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis. Biochem Biophys. Res. Commun. 1985;126:961–965. doi: 10.1016/0006-291X(85)90279-7. [PubMed] [CrossRef] [Google Scholar]
31. Oyama Y, et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn’s disease. Gastroenterology. 2005;128:552–563. doi: 10.1053/j.gastro.2004.11.051. [PubMed] [CrossRef] [Google Scholar]
32. Burt RK, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood. 2010;116:6123–6132. doi: 10.1182/blood-2010-06-292391. [PubMed] [CrossRef] [Google Scholar]
33. Hasselblatt P, et al. Remission of refractory Crohn’s disease by high-dose cyclophosphamide and autologous peripheral blood stem cell transplantation. Aliment Pharm. Ther. 2012;36:725–735. doi: 10.1111/apt.12032. [PubMed] [CrossRef] [Google Scholar]
34. Hawkey CJ, et al. Autologous hematopoetic stem cell transplantation for refractory Crohn disease: a randomized clinical trial. J. Am. Med. Assoc. 2015;314:2524–2534. doi: 10.1001/jama.2015.16700. [PubMed] [CrossRef] [Google Scholar]
35. Lindsay JO, et al. Autologous stem-cell transplantation in treatment-refractory Crohn’s disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol. Hepatol. 2017;2:399–406. doi: 10.1016/S2468-1253(17)30056-0. [PubMed] [CrossRef] [Google Scholar]
36. Wang R, et al. Stem cell therapy for Crohn’s disease: systematic review and meta-analysis of preclinical and clinical studies. Stem Cell Res Ther. 2021;12:463. doi: 10.1186/s13287-021-02533-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Hawkey CJ. Hematopoietic stem cell transplantation in Crohn’s disease: state-of-the-art treatment. Dig. Dis. 2017;35:107–114. doi: 10.1159/000449090. [PubMed] [CrossRef] [Google Scholar]
38. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev. Cell. 2010;18:175–189. doi: 10.1016/j.devcel.2010.01.011. [PubMed] [CrossRef] [Google Scholar]
39. Xue R, et al. Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis. J. Transl. Med. 2018;16:126. doi: 10.1186/s12967-018-1464-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Shi M, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl. Med. 2012;1:725–731. doi: 10.5966/sctm.2012-0034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Liu Y, Dong Y, Wu X, Xu X, Niu J. The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res. Ther. 2022;13:204. doi: 10.1186/s13287-022-02882-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Lin BL, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology. 2017;66:209–219. doi: 10.1002/hep.29189. [PubMed] [CrossRef] [Google Scholar]
43. Gordon MY, et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells. 2006;24:1822–1830. doi: 10.1634/stemcells.2005-0629. [PubMed] [CrossRef] [Google Scholar]
44. Arroyo V, et al. Acute-on-chronic liver failure in cirrhosis. Nat. Rev. Dis. Prim. 2016;2:16041. doi: 10.1038/nrdp.2016.41. [PubMed] [CrossRef] [Google Scholar]
45. Zhang Z, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol. 2012;27(Suppl 2):112–120. doi: 10.1111/j.1440-1746.2011.07024.x. [PubMed] [CrossRef] [Google Scholar]
46. El-Ansary M, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev. Rep. 2012;8:972–981. doi: 10.1007/s12015-011-9322-y. [PubMed] [CrossRef] [Google Scholar]
47. Xu L, et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells. J. Gastroenterol. Hepatol. 2014;29:1620–1628. doi: 10.1111/jgh.12653. [PubMed] [CrossRef] [Google Scholar]
48. Suk KT, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64:2185–2197. doi: 10.1002/hep.28693. [PubMed] [CrossRef] [Google Scholar]
49. Fang X, et al. A study about immunomodulatory effect and efficacy and prognosis of human umbilical cord mesenchymal stem cells in patients with chronic hepatitis B-induced decompensated liver cirrhosis. J. Gastroenterol. Hepatol. 2018;33:774–780. doi: 10.1111/jgh.14081. [PubMed] [CrossRef] [Google Scholar]
50. Mohamadnejad M, et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int. 2013;33:1490–1496. doi: 10.1111/liv.12228. [PubMed] [CrossRef] [Google Scholar]
51. Nguyen TL, et al. Autologous bone marrow mononuclear cell infusion for liver cirrhosis after the Kasai operation in children with biliary atresia. Stem Cell Res. Ther. 2022;13:108. doi: 10.1186/s13287-022-02762-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Bai YQ, et al. Outcomes of autologous bone marrow mononuclear cell transplantation in decompensated liver cirrhosis. World J. Gastroenterol. 2014;20:8660–8666. doi: 10.3748/wjg.v20.i26.8660. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Guo C, et al. Long-term outcomes of autologous peripheral blood stem cell transplantation in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2019;17:1175–1182 e1172. doi: 10.1016/j.cgh.2018.10.034. [PubMed] [CrossRef] [Google Scholar]
54. Newsome PN, et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2018;3:25–36. doi: 10.1016/S2468-1253(17)30326-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55. Spahr L, et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS ONE. 2013;8:e53719. doi: 10.1371/journal.pone.0053719. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin. Med. 2018;18:245–250. doi: 10.7861/clinmedicine.18-3-245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Huang TD, Behary J, Zekry A. Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management. Intern. Med. J. 2020;50:1038–1047. doi: 10.1111/imj.14709. [PubMed] [CrossRef] [Google Scholar]
58. Sakai Y, et al. Clinical trial of autologous adipose tissue-derived regenerative (stem) cells therapy for exploration of its safety and efficacy. Regen. Ther. 2021;18:97–101. doi: 10.1016/j.reth.2021.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
59. Mieli-Vergani G, et al. Autoimmune hepatitis. Nat. Rev. Dis. Primers. 2018;4:18018. doi: 10.1038/nrdp.2018.17. [PubMed] [CrossRef] [Google Scholar]
60. Calore E, et al. Haploidentical stem cell transplantation cures autoimmune hepatitis and cerebrovascular disease in a patient with sickle cell disease. Bone Marrow Transpl. 2018;53:644–646. doi: 10.1038/s41409-017-0065-5. [PubMed] [CrossRef] [Google Scholar]
61. Vento S, Cainelli F, Renzini C, Ghironzi G, Concia E. Resolution of autoimmune hepatitis after bone-marrow transplantation. Lancet. 1996;348:544–545. doi: 10.1016/S0140-6736(05)64700-9. [PubMed] [CrossRef] [Google Scholar]
62. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol. Immunol. 2022;19:158–176. doi: 10.1038/s41423-021-00768-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63. Wang L, et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J. Gastroenterol. Hepatol. 2013;28(Suppl 1):85–92. doi: 10.1111/jgh.12029. [PubMed] [CrossRef] [Google Scholar]
64. Wang L, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resistant primary biliary cirrhosis. Stem Cells Dev. 2014;23:2482–2489. doi: 10.1089/scd.2013.0500. [PubMed] [CrossRef] [Google Scholar]
65. Martel-Pelletier J, et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2016;2:16072. doi: 10.1038/nrdp.2016.72. [PubMed] [CrossRef] [Google Scholar]
66. Olsson S, Akbarian E, Lind A, Razavian AS, Gordon M. Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC Musculoskelet. Disord. 2021;22:844. doi: 10.1186/s12891-021-04722-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
67. Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee—time for action. Nat. Rev. Rheumatol. 2021;17:621–632. doi: 10.1038/s41584-021-00673-4. [PubMed] [CrossRef] [Google Scholar]
68. Kubsik-Gidlewska A, et al. CD34+ stem cell treatment for knee osteoarthritis: a treatment and rehabilitation algorithm. J. Rehabil. Med Clin. Commun. 2018;3:1000012. doi: 10.2340/20030711-1000012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. Jevotovsky DS, Alfonso AR, Einhorn TA, Chiu ES. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthr. Cartil. 2018;26:711–729. doi: 10.1016/j.joca.2018.02.906. [PubMed] [CrossRef] [Google Scholar]
70. Wiggers TG, Winters M, Van den Boom NA, Haisma HJ, Moen MH. Autologous stem cell therapy in knee osteoarthritis: a systematic review of randomised controlled trials. Br. J. Sports Med. 2021;55:1161–1169. doi: 10.1136/bjsports-2020-103671. [PubMed] [CrossRef] [Google Scholar]
71. Han SB, Seo IW, Shin YS. Intra-articular injections of hyaluronic acid or steroids associated with better outcomes than platelet-rich plasma, adipose mesenchymal stromal cells, or placebo in knee osteoarthritis: a network meta-analysis. Arthroscopy. 2021;37:292–306. doi: 10.1016/j.arthro.2020.03.041. [PubMed] [CrossRef] [Google Scholar]
72. Bastos R, et al. Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2018;26:3342–3350. doi: 10.1007/s00167-018-4883-9. [PubMed] [CrossRef] [Google Scholar]
73. Molnar, V. et al. Mesenchymal stem cell mechanisms of action and clinical effects in osteoarthritis: a narrative review. Genes13, 949 (2022). [PMC free article] [PubMed]
74. Barisic S, Childs RW. Graft-versus-solid-tumor effect: from hematopoietic stem cell transplantation to adoptive cell therapies. Stem Cells. 2022;40:556–563. doi: 10.1093/stmcls/sxac021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. Mello MM, Brennan TA. The controversy over high-dose chemotherapy with autologous bone marrow transplant for breast cancer. Health Aff. (Millwood) 2001;20:101–117. doi: 10.1377/hlthaff.20.5.101. [PubMed] [CrossRef] [Google Scholar]
76. Sissung TM, Figg WD. Stem cell clinics: risk of proliferation. Lancet Oncol. 2020;21:205–206. doi: 10.1016/S1470-2045(19)30787-9. [PubMed] [CrossRef] [Google Scholar]
77. Fu, X. et al. Mesenchymal stem cell migration and tissue repair. Cells8, 784 (2019). [PMC free article] [PubMed]
78. Zachar L, Bacenkova D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J. Inflamm. Res. 2016;9:231–240. doi: 10.2147/JIR.S121994. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
79. de Araujo Farias V, Carrillo-Galvez AB, Martin F, Anderson P. TGF-beta and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25–37. doi: 10.1016/j.cytogfr.2018.06.002. [PubMed] [CrossRef] [Google Scholar]
80. Ding W, et al. Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood. 2010;116:2984–2993. doi: 10.1182/blood-2010-02-269894. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Ritter E, et al. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann. Surg. 2008;247:310–314. doi: 10.1097/SLA.0b013e31816401d5. [PubMed] [CrossRef] [Google Scholar]
82. Cronwright G, et al. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res. 2005;65:2207–2215. doi: 10.1158/0008-5472.CAN-04-1882. [PubMed] [CrossRef] [Google Scholar]
83. Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 axis in cancer progression. Cancers12, 1765 (2020). [PMC free article] [PubMed]
84. Karnoub AE, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–563. doi: 10.1038/nature06188. [PubMed] [CrossRef] [Google Scholar]
85. Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol. Cancer. 2010;9:129. doi: 10.1186/1476-4598-9-129. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Schmohl KA, Muller AM, Nelson PJ, Spitzweg C. Thyroid hormone effects on mesenchymal stem cell biology in the tumour microenvironment. Exp. Clin. Endocrinol. Diabetes. 2020;128:462–468. doi: 10.1055/a-1022-9874. [PubMed] [CrossRef] [Google Scholar]
87. Mishra PJ, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–4339. doi: 10.1158/0008-5472.CAN-08-0943. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88. Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS ONE. 2013;8:e62844. doi: 10.1371/journal.pone.0062844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
89. Ho IA, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31:146–155. doi: 10.1002/stem.1247. [PubMed] [CrossRef] [Google Scholar]
90. Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol. 2014;7:14. doi: 10.1186/1756-8722-7-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Rhee KJ, Lee JI, Eom YW. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int. J. Mol. Sci. 2015;16:30015–30033. doi: 10.3390/ijms161226215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Liang W, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol. Biol. Lett. 2021;26:3. doi: 10.1186/s11658-020-00246-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
93. Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front. Bioeng. Biotechnol. 2020;8:43. doi: 10.3389/fbioe.2020.00043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Cao GD, et al. The oncolytic virus in cancer diagnosis and treatment. Front. Oncol. 2020;10:1786. doi: 10.3389/fonc.2020.01786. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Retracted
95. Melen GJ, et al. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett. 2016;371:161–170. doi: 10.1016/j.canlet.2015.11.036. [PubMed] [CrossRef] [Google Scholar]
96. Garcia-Castro J, et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther. 2010;17:476–483. doi: 10.1038/cgt.2010.4. [PubMed] [CrossRef] [Google Scholar]
97. Draganov DD, et al. Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers. J. Transl. Med. 2019;17:100. doi: 10.1186/s12967-019-1829-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98. Cyranoski D. How human embryonic stem cells sparked a revolution. Nature. 2018;555:428–430. doi: 10.1038/d41586-018-03268-4. [PubMed] [CrossRef] [Google Scholar]
99. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. [PubMed] [CrossRef] [Google Scholar]
100. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. [PubMed] [CrossRef] [Google Scholar]
101. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. [PubMed] [CrossRef] [Google Scholar]
102. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ. Res. 2002;91:866–876. doi: 10.1161/01.RES.0000041435.95082.84. [PubMed] [CrossRef] [Google Scholar]
103. Andrews PW. From teratocarcinomas to embryonic stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002;357:405–417. doi: 10.1098/rstb.2002.1058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104. Finch BW, Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc. Natl Acad. Sci. USA. 1967;57:615–621. doi: 10.1073/pnas.57.3.615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
105. Ried T, et al. The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. Biochim Biophys. Acta. 2012;1819:784–793. doi: 10.1016/j.bbagrm.2012.02.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156. doi: 10.1038/292154a0. [PubMed] [CrossRef] [Google Scholar]
107. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA. 1981;78:7634–7638. doi: 10.1073/pnas.78.12.7634. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Lo B, Parham L. Ethical issues in stem cell research. Endocr. Rev. 2009;30:204–213. doi: 10.1210/er.2008-0031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
109. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–813. doi: 10.1038/385810a0. [PubMed] [CrossRef] [Google Scholar]
110. Schwartz SD, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–720. doi: 10.1016/S0140-6736(12)60028-2. [PubMed] [CrossRef] [Google Scholar]
111. Atala A. Human embryonic stem cells: early hints on safety and efficacy. Lancet. 2012;379:689–690. doi: 10.1016/S0140-6736(12)60118-4. [PubMed] [CrossRef] [Google Scholar]
112. Schwartz SD, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–516. doi: 10.1016/S0140-6736(14)61376-3. [PubMed] [CrossRef] [Google Scholar]
113. Song WK, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4:860–872. doi: 10.1016/j.stemcr.2015.04.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
114. Liu Y, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018;4:50. doi: 10.1038/s41421-018-0053-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
115. Limnios IJ, Chau YQ, Skabo SJ, Surrao DC, O’Neill HC. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res. Ther. 2021;12:248. doi: 10.1186/s13287-021-02316-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
116. Foltz, L. P. & Clegg, D. O. Rapid, directed differentiation of retinal pigment epithelial cells from human embryonic or induced pluripotent stem cells. J. Vis. Exp.128, e56274 (2017). [PMC free article] [PubMed]
117. Kuroda T, Ando S, Takeno Y, Kishino A, Kimura T. Robust induction of retinal pigment epithelium cells from human induced pluripotent stem cells by inhibiting FGF/MAPK signaling. Stem Cell Res. 2019;39:101514. doi: 10.1016/j.scr.2019.101514. [PubMed] [CrossRef] [Google Scholar]
118. Dewell TE, et al. Transcription factor overexpression drives reliable differentiation of retinal pigment epithelium from human induced pluripotent stem cells. Stem Cell Res. 2021;53:102368. doi: 10.1016/j.scr.2021.102368. [PubMed] [CrossRef] [Google Scholar]
119. Dehghan S, Mirshahi R, Shoae-Hassani A, Naseripour M. Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Res. Ther. 2022;13:217. doi: 10.1186/s13287-022-02894-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
120. Menasche P, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur. Heart J. 2015;36:2011–2017. doi: 10.1093/eurheartj/ehv189. [PubMed] [CrossRef] [Google Scholar]
121. Menasche P, et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 2018;71:429–438. doi: 10.1016/j.jacc.2017.11.047. [PubMed] [CrossRef] [Google Scholar]
122. Cyranoski D. ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature. 2018;557:619–620. doi: 10.1038/d41586-018-05278-8. [PubMed] [CrossRef] [Google Scholar]
123. Povsic, T. J. & Gersh, B. J. Stem cells in cardiovascular diseases: 30,000-foot view. Cells10, 600 (2021). [PMC free article] [PubMed]
124. Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016;2016:9451492. doi: 10.1155/2016/9451492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
125. McKenna, S. L. et al. Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J. Neurosurg. Spine1, 1–10 (2022). [PubMed]
126. Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen. Med. 2020;5:15. doi: 10.1038/s41536-020-00100-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Kim JY, Nam Y, Rim YA, Ju JH. Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev. Rep. 2022;18:142–154. doi: 10.1007/s12015-021-10262-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
128. Ji P, Manupipatpong S, Xie N, Li Y. Induced pluripotent stem cells: generation strategy and epigenetic mystery behind reprogramming. Stem Cells Int. 2016;2016:8415010. doi: 10.1155/2016/8415010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129. Fu X. The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol. Immunol. 2014;11:14–16. doi: 10.1038/cmi.2013.60. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
130. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013;19:998–1004. doi: 10.1038/nm.3267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
131. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 1966;16:381–390. [PubMed] [Google Scholar]
132. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. [PubMed] [CrossRef] [Google Scholar]
133. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat. Rev. Mol. Cell Biol. 2011;12:126–131. doi: 10.1038/nrm3049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. [PubMed] [CrossRef] [Google Scholar]
135. Zhou T, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021;14:24. doi: 10.1186/s13045-021-01037-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
136. Ankrum J, Karp JM. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 2010;16:203–209. doi: 10.1016/j.molmed.2010.02.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
137. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 2003;5:32–45. doi: 10.1186/ar614. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
138. Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol. Biol. Lett. 2011;16:493–514. [PMC free article] [PubMed] [Google Scholar]
139. Alkhalil M, Smajilagic A, Redzic A. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation. Med. Glas. (Zenica) 2015;12:27–32. [PubMed] [Google Scholar]
140. Ouryazdanpanah N, Dabiri S, Derakhshani A, Vahidi R, Farsinejad A. Peripheral blood-derived mesenchymal stem cells: growth factor-free isolation, molecular characterization and differentiation. Iran. J. Pathol. 2018;13:461–466. [PMC free article] [PubMed] [Google Scholar]
141. Francis MP, Sachs PC, Elmore LW, Holt SE. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis. 2010;6:11–14. doi: 10.4161/org.6.1.10019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
142. Gong X, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol. Int. 2014;38:405–411. doi: 10.1002/cbin.10240. [PubMed] [CrossRef] [Google Scholar]
143. Wang B, et al. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World J. Stem Cells. 2020;12:462–470. doi: 10.4252/wjsc.v12.i6.462. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Pilato, C. A. et al. Isolation and characterization of cardiac mesenchymal stromal cells from endomyocardial bioptic samples of arrhythmogenic cardiomyopathy patients. J. Vis. Exp. 132, e57263 (2018). [PMC free article] [PubMed]
145. Mannino G, et al. Adult stem cell niches for tissue homeostasis. J. Cell Physiol. 2022;237:239–257. doi: 10.1002/jcp.30562. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
146. Pavlushina SV, Orlova TG, Tabagari DZ. [Isolation of mononuclear cells from the bone marrow of patients with hemoblastoses using one-step ficoll-verographin density gradient separation] Eksp. Onkol. 1984;6:68